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Heavy lon Inertial Fusion (HIF) goal is to develop an accelerator
that can deliver beams to ignite an inertial fusion target

,.,_::_‘_‘::::::"_;_f_'il- 0.7lcm Ion FUSiOn dri Y a—

d

DT— «——15cm—

Target requirements:
- 3-7MJ x ~ 10 ns = ~ 500 Terawatts
" lon Range: 0.02 - 0.2 g/cm2 = 71-10 GeV
drive accelerator requirements:
A~200 = ~10'¢ jons, 100 beams, 1-4 kA/beam

16 beams
PN e

8
‘b

How near term goal is High-Energy Density Physics (HEDP).
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Time and length scales in driver and chamber span a wide range

Time scales: depressed
betatron betatron

Tob electron drift
¢ " ~ out of magnet
In driver ﬁ:.sl lattice
electron nru iod
fringe PEMO°
cyclotron I beam
in magnet fields puise residence

12 1110 9 8 -7 6 5 4 3 -2 1 0
pulse | oam log of timescale
residence in seconds

In chamber =
pe — . —

pb

Length scales: - electron gyroradius in magnet ~10 um
* }"D,beam ~1mm
* beam radius ~ cm
* machine length ~ km's
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Modeling of a plasmas - classification (1)

- Collection of a large number of interacting charged particles

— Particles mathematically described by

- Lagrangian approach: evolution of singularities
#% Klimontovitch eq.
- Eulerian approach: evolution of an incompressible fluid

% in phase-space: Boltzmann/Fokker-Planck eq. (collisions), Vlasov eq.
(no collisions)

% in real space: fluid/MHD eq.

— Interactions mathematically described by

- Lagrangian approach: sum from all singularities, instantaneous or with
retardation

- Eulerian approach: fields
& instantaneous: Poisson
g with retardation: Maxwell
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Modeling of a plasmas - classification (2)

- In summary, the modeling of a plasma implies the modeling of
a collection of particles  fluid cells in phase-space fluid cells in configuration space

[ 111 [ 111

s o S

kov\e: or v or y m 4

— { =N u

[ 11
interacting N X
directly O Le
g
X

- The numerical integration leads to further splitting

— Partial differential equations: finite-differences/volumes/elements, Monte-
Carlo, semi-Lagrangian,

— Time integration: explicit/implicit,
— Direct interaction: direct summation, multipole expansion (tree-codes),
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Modeling of a plasmas - commonalities, speed-up

- All these methods have in common that they must update the status
of N quantities (particle/fluid/field quantities) from time t to time t+At

* In order to minimize the computing time, N/At should be minimized

— grids: non-uniform, block-structured, high-order splines, filtering,

— time steps: non-uniform, different for particle groups (species, velocity,
...), different for grid blocks (with different Ax), high-order integrators,

averaging over smallest time scales,
— particles: splitting/merging, high-order splines, filtering,
— hybrids
- Groups of particles modeled differently, according to species,
velocities, momentum, charge state, ...
- particle-particle-particle-mesh (pp-pm),

- regions modeled differently (for example implicit in high-density parts,
explicit in low-density parts)

- The subject is very large. We will focus on a few recent developments.
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The Adaptive-Mesh-Refinement (AMR) method

- addresses the issue of wide range of space scales
- well established method in fluid calculations

3D AMR simulation of an explosion (microseconds after ignition)

AMR concentrates the resolution around the edge which contains the most interesting

scientific features.
- however, coupling to PIC/Vlasov/MHD methods has to be done with
care
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Coupling of AMR to PIC/Vliasov/MHD: issues

Mesh refinement implies a jump of resolution and some procedure for coupling the
solutions at the interface. What kind of issues can we expect?

- loss of symmetry: self-force?

- conservation laws?

- waves (EM, plasma)?

We will look at some of these aspects using simple schemes in reduced
dimensions.

I 1 he Heavy lon Fusion Virtual National Laboratory . ﬁ>| l'ﬂ E é\jpppl
Vay 09/09/05 =y 7



Example: 2-D PIC-electrostatic

1.

2.

Given a hierarchy of grids, there exists several ways to solve Poisson.

Two considered here:

‘1-pass’
solve on coarse grid
interpolate solution on fine grid boundary
solve on fine grid
different values on collocated nodes

‘N-pass’
interleave coarse and fine grid relaxations
collocated nodes values reconciliation

> same values on collocated nodes
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lllustration of the spurious self-force effect

« 1 grid with metallic boundary + 1 refinement patch

Metallic boundary 30r
| [ T T T [ 1 _—— e
“Mother” grid 20+ Iri?“;?afﬁe_g
T T T X — i -N-
EEEEEEEEE 10+ £ linear - N-pass
Patch grid | R — Qquad.-1-pass
SR - 0 . quad. - N-pass
401 Test particle

25

0O 100 200 300 400 500
T

one particle attracted by its image particle trapped in patch

v < \\/V’V?&

= MR introduces spurious force,
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Self-force amplitude map and mitigation

Method
1-pass N-pass | ,4E)

"E i main grid
L2
20 ) patch
y

transition region
& N Y

Linear

Quadratic

Interpolation between patches

0
0 10 x 20 30

» Magnitude of self force decreases rapidly with distance from edge

 with the 1-pass method, the coarse grid solution is free of self-force:
=> the self-force effect can be mitigated by defining a transition region surrounding the
patch in which deposit charge and solve, but get field from underlying coarse patch

* N-pass method: coarse grid solution has spurious self-force
=> NO easy mitigation method
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Global error 6= 0V b /N
1-pass N-pass

30

20

Linear
<

10 10

>

30

20

Quadratic

10 10

o

0
0 10 X 20 30 0 10 X 20 30

=> global error larger with N-pass than 1-pass



i

Global error ¥ |- 6. ) 0. |/N Lgﬁ-as - [[[; pev

N-pass N-pass

30

20

Linear
<

10

30

20

Quadratic

10

0

20 30
X

0 10

= N-pass: global error due to violation of Gauss’ law



Electromagnetics: usual scheme

Rc: coarse resolution
Rf: fine resolution

* the solution is computed as usual in the main grid and in the patch

* interpolation is performed at the interface
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« We consider 1d wave
equation

0E 0B 9B JE

Jt 0x ot 0x

- staggered on a regular
space time grid

« We use finite-difference
time-centered scheme
i+1 i i+1/2 i+1/2

EY -E, B5-B,

_ Pian j-1/2

ot ox
Bi+1/2 _ Bi—1/2 Ei

j+1/2 J+1/2 T+l

_ E;
St o
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1-D AMR-EM: space refinement only (factor 3)

t grid 1 Interface grid 2

DI O G 4

s 4 3 2 j+1 2 i3 x
o, + : finite-difference

[o] : finite-volume or ‘jump’ inside fine grid
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1-D AMR-EM: space and time (factor 3)

i+2| ot——Po

i+l o e

i-2] o "o

grid 1

Interface

grid 2

0x,=30x,

T a3

i-5 43 g2

o, + : finite-difference

[o] : interpolated from previous and next computed values
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1-D AMR-EM: illustration of instability*

10¢ — 'jump' (n=3) 10k — 'jump’ space-time (n=3)
(I finite volume (n=3) =\ energy conserving (n=2)
R Tpee
0.01} ' 0.1
i  f
eS| 001}
i et 7
1E-5¢ N
1E-6F Space onIy 1E-4¢ Space+T|me
B “00 TEST0 T
z-[dUﬁ)(ﬁne grid (éxooarse gn'd=n®(ﬁne grid) 2J'lﬁ Uﬁxﬁne grid (6Xooarse gridznéxﬁne g’id)
*J.-L. Vay, JCP (2001)
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Coupling of AMR to PIC/Viasov/MHD: Issues (summary)

1. Asymmetry of grid implies asymmetry
of field solution for one particle/marker/fluid cell s
» spurious self-force

2. Some implementations may violate Gauss’ Law
» total charge may not be conserved exactly

3. EM: shortest wavelength resolved on fine grid not resolved on coarse
grid may reflect at interface

» if reflection factor <=1, spurious waves
» if reflection factor >1, may cause instability by multiple reflections

Remark: BTW, these are general and apply also to irregular griddings!
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Current HCX Configuration
(High Brightness Beam Transport Campaign, 2005)

Focus of Current
Gas/Electron Experiments

1 MeV, 0.18 A, t= 5 us,
6x10'2 K*/pulse

INJECTOR MATCHING ELECTROSTATIC MAGNETIC
SECTION QUADRUPOLES QUADRUPOLES

Additional Experiments: Fill-Factor Measurements,
Head-Tail Correction, Wave Experiments
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We are using the accelerator PIC code WARP.

« Geometry: 3D, (x,y), or (r,z)
 Field solvers: FFT, capacity matrix, multigrid
« Particle pusher: Boris, subcycling
 Boundaries: “cut-cell” --- no restriction to “Legos”
 Bends: “warped” coordinates; no “reference orbit”
- Lattice description: general; takes MAD input
- solenoids, dipoles, quads, sextupoles, ...
- arbitrary fields, acceleration
 Beam injection: Child-Langmuir, and other models
 Diagnostics: Extensive snapshots and histories
« Parallel: MPI
 Python and Fortran: “steerable,” input decks are programs
- a GUl is also available

New advanced features:

- AMR, Electron mover with large time steps, gas and
electrons models, prototype Viasov (soon)
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3-D WARP simulation of High-Current Experiment (HCX)
3000000 |
—
2000000
. 1500000
1000000

500000

******
N

(from a WARP movie; R o~ 7
see http://hif.Ibl.gov/theory/simulation_movies.html) h S~

L f T 4

In the following slides, we will follow the story of the why and how we
implemented mesh refinement to get to numerical convergence.
| e
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3-D WARP simulation of HCX shows beam head scrapping

Rise-time t= 800 ns
3600000 1 beam head particle loss <0.1%

2500000

Rise-time t=400 ns
zero beam head particle loss

- Head cleaner with shorter voltage rise-time.

* Questions:
- what is the optimal rise-time?

- can we produce and model very-fast rise-time? /Q\l
e T he Heavy lon Fusion Virtual National Laboratory m i, =< | | .
v : K peRL
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Test: 1-D time-dependent modeling of ion diode

Emitter Collector Analytic solution from Lampe1I-OTiefenback
> V(t) t 4 5 )3 v é
[)=—_—— | max
g 3T T §
>
T: transit time) .
> ( O'% 0 th 1.0
> 10 T T T T T T T T
v V=0 - — Child-Langmuir
< > 081 VN e
d > : -
)
€ 0.6}
Applied voltage for Heavyside § !
current history? 04}
A -
|5 02t
5 [ Front at time t
O O . 1 . 1 . 1 . 1 L
> %.0 0.2 04 0.6 0.8 1.0
time x/d
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Test: 1D time-dependent modeling of ion diode (algo 1)

Injection algorithm

Result

Emitter g

<« Vvirtual surface

Collector

Child-Langmuir solution™ + voltage

drop between emitter and virtual

surface determines current to inject.

) -
0.0

>
>
> 3/2

(V-Vv,) 4 \/Z
» [ = T X = =&y |—
1T T AT,
>

< — —_
. = AQ = Ng = IAt
VYV, V=0
"""" ] 40 T T T T 7T LI B T
] —— Analytic ,
L f — Simulation -
30: II'I'/\/\/——;
- I; : . .
1 = Simulation
= 20 result exhibits
Lampel-Tiefenback N = 160 large
waveform ol At=1ns _ unphysical
d=0.4m  oscillation.
IOTSH--1f0”H1-|5-1-0A;‘2J-0 %0 05 ‘”1%011“1.15”_;12{0
Time (s) Time (s)  °

*1-D; => J=I (J=I/S, S=1)
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Unphysical oscillation related to Nb particles injected/time step (N,)

40 LI B B B B T T T T 1 1

—— Analytic .

i — Simulation 1

30 f/\/\,—_.

I | ]

I 4

i_E/ 20
N =160
10} At=1ns _
d=0.4m
0>_J_A_I_,_uk PO SR [N TR TR TR SN SN SN S N1 :J
0.0 05 1.0 15 . 2.0
Time (s) 10

Idea"y, Al ]
Ni (V V)3/2 C t 10+ -
—=y—-—=05te 5 | 1
YRR 2 ]
C>3 L ]
but the c}nvmg > | _
voltage is a 2 |
continous function |
derived analytically.—»/ = 1
0. i

Time (s)

/ -.\ T T
I / A
" 150} / \ .
q) - ,"‘ \ 4
o | \ ]
— \
5 / \ i
'g- . / A ]
@ / N
Q f
o [
L s} | _
o 7/ T
= I f 1
o ]
0 L-r_/ L 1 L | L 2 1 L L | ;
1] 200 400 600
Time steps

=> Inconsistency due to
infinitesimal solution applied in
discrete world.
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Cure: derive voltage history numerically

Emitter g Collector
Injection algorithm A: virtual surface We apply Lampel-Tiefenback
> method at the discrete level
. I 2/3
J AQ=Ng=IAt=V -V =|—
> X
> solve for V using linearity of Poisson
< >
VYV, d V=0 (V-Vi) = (V-Vi)y=o + (V-Vi) =0
vvvvvv — 40 e T —
Result | ] still a spike | Large unphysical
L ol ' oscillation has
= | _ ; + been suppressed
% 4 “ Numerical ] < | ' but there is still a
Z | /waveform | = 2o | spike. Is it due to
= 2 - [ N=160 - initial step V,in
_~T] _ Lampel-Tiefenback oI At=1ns ;1 waveform?
Vo K waveform SISt L
R 1R =B I T R Y
Time (s) Time (&)
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Cure #2: apply irregular gridded patch around emitter.

T 771 Emitter g Collector
6. Initial potential - !
10 y Vo given by <—virtual surface > - Apply irregular gridded patch
1/3 - covering d,
a ]/ V.=V i ] > * Mesh sizes such that number of
S / 0 e\ d | > particles per cell is a constant in
> - > patch assuming Child-Langmuir
2t / . solution for p(z)
v =102 L .
=Vo/Vinax 1(_)6' _‘ > » Apply same injection algorithm
means dy/d=10"! - < > as before in patch
%0 lo_flgi‘m‘e’(s';%o' s 1'0_; 20 VVI d V=
Result VA | 0 oo ]
6 . Spike still here
10 30/ !
% “r Numerical A .
S Waveform < < = N =160
> 2 I At=1ns
Lampel-Tiefenback °r ﬂ=_0'2£:;3 ]
waveform - s
Ol.xkllkl..lkllkl..AAJ 0> ||.‘_A1||1x1.AA|_AJ
0.0 05 1.0 1.5 20 0.0 05 1.0 15 20
. 10 106
Time (s)
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Cure #3: apply regularly gridded patch following front.

pDeam uurrent
40 ———T—T— ——T— ——

30—

(Amps)

20

An Adaptive-Mesh-Refinement patch

Follows the front \

oﬁl I S S S Y O S O S | ——
0.0 ) 01 0.2 0.3 04
Z (m)
""" ] 40 L L B L T T T T 1 LI |
Result 6l | At this point,
i ~ we declared
i 30F- [ T victory!
W 4l : i I ]
S | WAPP'f'efm | 2 . N = 160
= aveto 1 =71 At =1ns
2 i d=0.4m ]
Lampel-Tiefenback o N, = 200 ]
Ol‘nxxlxx.‘lxxnxl.‘nt_l 0* 1..l|1|xl..1|j
0.0 05 1.0 15 100 20 0.0 05 10 15 . 20
Time (s) Time (s) )10\1
e The Heavy lon Fusion Virtual National Laboratory m, <" U E N
v Y IE =PPPL
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Summary O

Regular grid | Di's'ci'elté'volt‘ég'er solution
. 30/ fff\/\""‘ 30/
- Discrete voltage : | : :
solution or MR patch < | 1<
suppressed long - N = 160 1 N = 160
. . L — 1 - - — 1
wavelength oscillation ! At=1ns 1 At=1ns |
d=04m d=0.4m
« AMR patch , : : ‘
0 PN T NS T T N SO S S W b 1 PN T NS T T N SO S S W
0.0 05 1.0 1.5 2.0 0.0 05 1.0 1.5 2.0
suppressed front Time (s . T gy |
peak 40 a 40— e — N
Emltter MR patch | Emitter MR patch + |
[ | ] - AMR patch
80 ' ] 30t |
< 5 < | N = 160
- N=160 - — % At =1ns
I At=1ns I d=0.4m
10l d=0.4m — ol N, = 200 :
N,=200 ; | AMR ratio = 16 -
00 "I0f5”“1%°lIH1-15-1-0_;12J-° %0 05 1|0115§]0
Time (s) Time (s) '
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Extension to three dimensions

« Specialized 1-D patch - Extended Lampel-Tiefenback technique to 3-D,
implemented in 3-D and implemented in WARP
injection routine, as a 2-D » predicts a voltage waveform which extracts a
array of 1-D patches. nearly flat current at emitter
_lon source diode “Optlmlzed” Voltage Current at Z=0.62m
02— MR |Ibatch - I | | — MR -
) | 1F 000 I B NO MR
bR - e
R 5
: 5 | 4000 — Al
face
06 g 0 2 4 6 8

« Without MR, WARP predicts overshoot

- Run with MR predicts very sharp risetime (not square due to erosion)
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Test of MR patch on modeling of STS500 Experiment.

0kV
Port for
slit scanner
Cunent history (Z=0.62m) Cunent history (Z=0.62m)
6~ —— Experiment 6~ —— Experiment
. —— Theory - = Theory
< | - < |
E 4 1 E 4 |
2 | 2 |
o | S |
-~ WARP optimized 3 2_|\/|R OFF 1 3 2_|\/|R ON 1
0 — 1 0 " 1
0 2 4 6 8 4 0 2 4
T (ps) Time (us) Time (u8)

* J.-L. Vay et al, PoP (2003)
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Modeling of source critical - determines initial shape of beam.

0.0 0.1 0.2 0.3 0.
Z
Run Grid size | Nb particles
Low res. 56x640 ~1M
Medium res. 112x1280 ~4M
High res. 224x2560 ~16M
Very High res. 448x5120 ~64M
® :
=101 —— Lowres. —— Medium res.
€ ", — High res. —— Very High res.
WARP-RZ (axi-symmetric) E08] | A 1
simulations show that a fairly > \%0.6_ TR R A
high resolution is needed to 2041\, NOTR
h convergence ¥ ol ——= e
reacC )
%.0 0.1 03 04

2



First MR attempt - 1 MR block surrounding emitter.

0.20
«o0s Refining around the
15 =5 @mitter area is enough to
0.10 " recover emittance from
0.05 ..s converged high-
' wos  resolution case.
0.00 0
0.0 0.1 0.2 0.3 0.4
4
£ .
® 1.0 ——Lowres. —— Medium res.
S | w —— Highres. ~ ——— Medium res. + MR
c 0.8H/M™
é [ ettt P Run Grid size | Nb particles
- WA s ‘HH} M “H \ W ’.‘ AN "‘““\ \ el ‘.,l ‘ il T Aa )
2 0.6 [ * IV AT P |“‘" Ay J u““" ik Low res. 56x640 ~1M
E 0.4 W Medium res. 112x1280 ~4M
B ! o High res. 224x2560 ~16M
~ 0.2 ' : : : : : : ' | Mediumres. +MR | 112x1280 ~4M
0.0 0.1 0.2 0.3 04
Z(m)
. . Fanall ahAratAry S 5 e i | Y
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First MR attempt - 1 MR block surrounding emitter (2).

However, it is not enough for recovering details of distribution.

Low res. Medium res. High res. Medium res. + MR

0.015

R’ (rad.)

0.000

—_
™
£
Y / O Ll
| ‘yv“ﬁ""" M ""'.,4"\ A r\//\vl ."‘ i < 2 A ,f\,\\ N
{ { \/
‘ 1A% / (o)
_C
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Second attempt - 1 MR block with adaptive excavation.

0.10 '
X again.
0.05
0.00
0.0 0.1 0.2 0.3 0.4
Z
° .
@ 1.0 ——Low res. —— Medium res.
S | w —— Highres. ~ —— Medium res. + MR
& 0.8 /™ Run
S b
= 0.6 - ial¥ m‘,“(l‘,\«_w H,"‘\‘ I ‘/!m‘q“"‘,} "“‘,’W"”1“”\“"‘{ " l“"‘\’\ ) Low res.
= LI\ v Medium res.
% ¢ .
w 04+ ﬁ AN ol e e High res.
ﬂ-ﬁ - / | "” i | . . R | Medium res. + MR

—
N

0.3 04

o
o
o

No

EINX
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Grid size
56x640
112x1280
224x2560
112x1280

Emittance recovered,

Nb particles
~1M
~4M
~16M
~4M
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Second attempt - 1 MR block with adaptive excavation (2).

Refining emission are AND beam edge sufficient for recovering
details of distribution.

Low res. Medium res. High res. Medium res. + MR

0.015-

R’ (rad.)

0.000 :3

-0.005+ ~

Rho (C/m3)
Rho (C/m3)

D

'0""1R(m)2 3 0""1R(m)2' 3 '0""1R(m)2' B I m) —= 3
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Full AMR implementation: speedup ~10.5

Run
Low res.
Medium res.

High res.

Low res. + AMR

1 — Low res.
—— High res.

m \/ “P‘(““M\“‘l“\““

Grid size | Nb particles
56x640 ~1M

112x1280 ~4M

224x2560 ~16M
56x640 ~1M

— Medium res.
— Low res. + AMR

m \’H'(‘ Y ‘c‘!ﬂ’p",“‘,“' i 'Jll"“\”;fj,"l‘,l‘l\:‘l i,l‘,”"‘\'\‘ “‘”l‘

— 0.007

-0.006

-0.005

-0.004

0.003

0.002

0.001

0.02 |

0.00 .
0.0

Z(m) 0.1
Refinement of gradients: emitting area,
beam edge and front.

Z(m) 0.1 0.0




Outline

- Who we are. Our interest in multiscale modeling.
* Modeling of plasmas: generalities.

- AMR

* iSsues

* Electrostatic
- modeling of the High-Current Experiment (HCX)
- modeling of the Large Hadron Collider (LHC)

 Electromagnetic
 modeling of laser-plasma interaction

 Vlasov
* New particle mover for large time steps in magnetic fields
- Toward multiscale modeling of plasmas: some methods
« Conclusion
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Study of e-cloud in LHC FODO cell

The problem:
Simulate “multibunch, multiturn” passage of beam through FODO cell
(~100 m):
dipoles
quadrupoles
drifts

Electrons < synchrotron radiation, secondary emission

Study:

Electron accumulation and trapping in quads
Power deposition from electrons

First try with one bunch in periodic FODO cell.
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Frame 2nd passage of bunch through cell - 2

* We use actual LHC pipe shape: beam size << pipe radius
* Mesh Refinement provides speedup of x20,000 on field solve

beam electrons

)

0.02
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rame 2nd passage of bunch through cell -

BB BDB B B

(particles colored
according to radius)

I 1 he Heavy lon Fusion Virtual National Laboratory . ﬁ>| 1-"

Vay 09/09/05




Outline

- Who we are. Our interest in multiscale modeling.
* Modeling of plasmas: generalities.

- AMR

* iSsues

* Electrostatic
* modeling of the High-Current Experiment (HCX)
- modeling of the Large Hadron Collider (LHC)
 Electromagnetic
 modeling of laser-plasma interaction
* Vlasov

* New particle mover for large time steps in magnetic fields
- Toward multiscale modeling of plasmas: some methods
« Conclusion
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A cartoon of fast ignition.

Fast Ignitor : Electron generation and transport are crucial

1: Classical DT fuel 2: Pre-compressed ) N
compression by fuel heating using 3: Fuel ignition
ns laser beams fast electrons

ultra-short o
laser pulse | #"S

&

Fast electrons

(short pulse) 2 crucial problems:

.. =electron generation
- electron transport

-
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Vay 09/09/05




Laser-plasma interaction in the context of fast ignition

- A laser impinges on a
cylindrical target which

density is far greater than
the critical density.
A P Patch
20=28/k
- The center of the plasma 0=28/k
is artificially cooled to ‘_t_
simulate a cold high- A=1um,
density core. 1020W.cm2
(P,../m.c~8,83)
- Patch boundary surrounds \10nc, 10keV

plasma. Laser launched
outside the patch.

- Implemented new MR technique in EM PIC code Emi2d (E. Polytech.)
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EMI2D code

- PIC electromagnetic 2D, cubic splines (- noise, + stable), Esirkepov
exact current deposition scheme

- Boundary conditions: open system
— particles
ions leave the box freely
electrons reflected until an ion exit (overall charge conserved)
— EM fields: absorbing layer (“Asymmetric PML”*) + incoming wave

* Vay, JCP (2002)
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New MR method implemented in EM PIC code Emi2d

P

Outside patch:

F = FM ..'.. L
° ....,..
M coarse

Mesh refinement by substitution*

“** Inside patch:
F = FM-FC+FF

Applied to Laser-

plasma interaction in the ‘ A=1um, 1050, 10keV
context of fast ignition 1020W.cm-2
(P,../m.c~8,83)

*J.-L. Vay, J.-C. Adam, A. Heron, CPC (2004)
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Comparison patch on/off

lons X-Y particle plot att = 260.013 lons X-Y particle plot at t = 260.013 lons X-Y particle plot at t = 260.013

1000 500

14 14 14
400
12 12 12
800 400
o 10 10
5 5 . 300
500 300 8
200 5
400 200 .
100
2
200 100
I e () SSS—————\-L ) e 0
200 400 600 800 1000 100 200 300 400 500 200 400
o X X
600 2 att = 258.719
1000
400
> >
500
200
0 o e e
0 500 1000
X X

same results except for:
- small residual incident laser at exit of patch when patch englobes target
- dip in density on patch border when patch inside target



Partial cancellation due to numerical dispersion

—— B, fine patch
—— B, coarse patch _

600 —— difference

400

200

TR S T T NN TR SN TR SO N |

0 200 400 600 0 200 400 600 100 200 300 4
X

* main grid: laser +
plasma response +
residual

300 600

* patches: plasma
response at two
slightly different
velocities

100 200

0 100 200 300 4C 0 200 400 600 8(



Possible paths for better scheme

- Use less dispersive Maxwell solver
- Inject residual of waves on main grid at patch interface

- Do not use coarse patch and solve on fine patch with source
term dJ as a correction to J

PML

“F ﬂng """"""" Fresees . Inside patch: 6J

St sasnssasasassasnsnssnsnsnssnsd

Outside patch: J

#0ecceccccccce

M coarse

- Go back to usual scheme with a hole in the main grid
— put PML inside hole and on fine patch border

— couple using clean cross-injections
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Outline

- Who we are. Our interest in multiscale modeling.
* Modeling of plasmas: generalities.

- AMR

* iSsues

* Electrostatic
 modeling of the High-Current Experiment (HCX)
- modeling of the Large Hadron Collider (LHC)

 Electromagnetic
 modeling of laser-plasma interaction

 Vlasov
* New particle mover for large time steps in magnetic fields
- Toward multiscale modeling of plasmas: some methods
« Conclusion
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Solution of Vlasov equation on a grid in phase space offers
low noise, large dynamic range for beam halo studies

4D Vlasov testbed
(with constant
focusing) showed
structure of the halo
in a density-
mismatched beam

Px

X
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New ideas: moving grid to model time-dependent applied field,
AMR-Vlasov to resolve fine structures

moving phase-space grid,
based on non-split
semi-Lagrangian advance
[E. Sonnendrucker,

F. Filbet, A. Friedman,

E. Oudet, J.-L. Vay, CPC,
2004]

<=

=

adaptive mesh [M. Gutnic, M.
Haefele, I. Paun , E
Sonnendrucker, CPC 2004]
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3.3 - Development of AMR library for PIC at LBNL
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Effort to develop AMR library for PIC at LBNL

- Researchers from AFRD (PIC) and ANAG (AMR-Phil Colella’s
group) collaborate to provide a library of tools that will give AMR
capability to existing PIC codes (on serial and parallel computers)

- The base is the existing ANAG’s AMR library Chombo
(http://seesar.lbl.gov/anag/chombo)

« The way it works

AMR

........
s
at
.
ot

....... Pl(:
v
at
.
wnt

......
""""""""
...........
.....
. .
., *a

. '.',‘.‘ .....-" Setup grid . .".‘.'
Do other things § . : .‘
2 L»| Send particles ——-—4"’#’ hierarchy | | Deposit charge |

v

T [ Receive forces m
.. | Advance particles 4 Gather forces +———— Solve fields

- ta,
. .
........
-----------
"""""""""""""
.....................
..............................

WARP/MLI Chombo
- WARP is test PIC code but library will be usable by any PIC code

=
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Examples of pre-AMR-PIC simulations using Chombo

Phi (MV)

I1.80

1.55

1.05

. 0.80

WARP-Chombo injector field calculation* MLI-Chombo beam field calculation

* P. McCorquodale, P. Colella, D.P. Grote, J.-L. Vay, JCP (2004)
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Outline

- Who we are. Our interest in multiscale modeling.
* Modeling of plasmas: generalities.

- AMR

* iSsues

* Electrostatic
* modeling of the High-Current Experiment (HCX)
- modeling of the Large Hadron Collider (LHC)

 Electromagnetic
 modeling of laser-plasma interaction

* Vlasov
* New particle mover for large time steps in magnetic fields
- Toward multiscale modeling of plasmas: some methods
« Conclusion
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Motivation

quad quad quad

xAz Aax v

K ﬁ& vvy A
background gas desorbed gas desorbed
electrons

« Qur historical motivation: e-clouds in induction accelerators for HIF

— Need to follow electron orbits both in magnets (strongly magnetized) and in
between (unmagnetized).

— Analytic integration of orbits in B field impossible because beam potential
known only numerically and can’t be considered as impulsive.

* Need a way to accurately calculate electron orbits without having to take
timesteps small compared to cyclotron period

* Note:
— above considerations apply to:
> other kinds of accelerators
> plasmas with both strong and weak magnetic fields
Magnetic-fusion
Inertial confinement fusion
Space plasmas
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Statement of the problem

Magnetic .
Sample electron motion in a quad —
quadrupole quad

Problem: Electron gyro timescale

<< other timescales of interest

= brute-force integration very slow due to
small At

- Historical inspiration: Parker & Birdsall (JCP ’91)
— showed that standard Boris mover at large w At produces correct
ExB and magnetic drifts
— Price: anomalously large “gyro” radius (~ p w.At) and anomalously

low “gyro” frequency (particle orbit advances by almost «t in
gyrophase per timestep; precesses at frequency ~ 1/ w At?

— For our applications, low “gyro” freq. OK but large “gyroradius” is
not
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We have developed an interpolation technique that
allows us to skip over electron-cyclotron timescale

 Our solution: interpolation between full-electron dynamics (Boris
mover) and drift kinetics (motion along B plus drifts).

dv dv
View = Void + At (—) + (1 — «) <—>
dt Lorentz dt uV B

b(b-v)+av, + (1 —a)vy

Verf

 Choice a=1/[1+(w Al/2)?]"? gives, at both small and large w_ At,
— physically correct “gyro” radius
— correct drift velocity
— Correct parallel dynamics.

- Incorrect “gyration frequency” at large w At (same as pure Boris mover)

« Time step constraint set by next longer time scale -- typically electron
cross-beam transit time.
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Test problem: drit orbits in quadrupole field with a
specified beam space-charge potential

« Compare full orbit (w At ~ 0.25) to interpolated mover (o At ~ 2.5).

 Single orbit comparisons of some regular and nonadiabatic (chaotic) orbits:
— Chaotic orbits: ones launched on field lines that pass very close to field null.
— Good agreement on drift & bounce velocity, orbit size for regular orbits

— Expected non-agreement for chaotic orbits (expect similar statistics, but not tested)

-0.002

o -
time (s)
0.5 1.0

Average slope gives drift, frequency
- of stairsteps is bounce frequency
1.5 2.0
tme(s)  10°
I
Vay 09/09/05
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lon-ion two-stream instability test shows good
agreement in time histories
« Test problem:

— Uniform B field; counter-streaming proton beams along B, 10 p; across
- oJw, =48; vp/vy, =0.1; L/ p; = 60

— Compare: small 6t (o, 6t = 0.6), large At=20 &t (w, At = 12) with interpolation; At with
Boris mover (Parker-Birdsall)

— Finite beam-size effect: comparison with 20 p; beam

random seed => small time shift of (b)

100.01 anan T RS T T R T T T 100.01 T L TR
_\" | r' L1 ) ,"’. | /ll ',' ! (Y ,"’.
i I GLVRE A |
’-' HRY ! 4 [} | |
. I, 1R | . V) |
| 1% | f 'y
10.0 (LTS 10.0 | |
2 il g i
| f (1.5 £ | M
f I '
' [ |
1.0 ©) — ‘ 1.0 (c) (o)
(a) Small 6t il - | (@) Small 5t
(b) At=206t interpolated (1| (b) At=206t interpolated
(c) At=206t Boris || (c) At=208tBoris
ITTTITT M ‘ T i
0.1 ! H” W U i Il : ] H” ﬂl - 0.1 L L t _ l‘“ Il J!‘ il |l | ] H” “l _J
0. 1. 2. 3. 4. 0. 1. 2. 3. 4.
t(s) 105

: t(s) 10°
EEEEEEESSN—— | he Heavy Ion Fusion Virtual National Laboratory m L‘l“'% |& %&‘JI'PPI.
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lon-ion two-stream instability test shows good
agreement in z-v,, x-y phase space plots

.. .Referencerun interpolated mover Boris/Parker-Birdsall
small 6t At=2006t At=2006t
2.] 2. 2. -
108 10%5 10t
S y S
0 0. 0.
=2, - 2 -2. -
00 0z o4 06 08 o oz oa os  os | 00 02 o4 o6 o8
. z , z R
o.5i— — 0.5 0‘5;
S > [ >
0.0 0.0 0,05
-05- ~ os- - .05
o5 0.0 T s Tls 0 05 Tos 0.0 T os
X X X
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Coupled electron-ion test problem: electrons
desorbed at end plate upon ion bombardment

Quadrupole magnets

(c)\ Suppressor

K+
beam

7 Clearing electrodes

- Simulates experiment performed in High-Current Experiment (HCX) at LBNL
- lon beam allowed to hit end plate

- Copious electrons produced

* Here: calculate electron cloud produced in fourth magnet

- We have also calculated the electron cloud in all 4 magnets and the
resultant change in the ion phase space, and compared with experiment.
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Comparison simulations in 4th magnet are another
demo that the long-timestep electron mover works

Reference run

4.2 . . ‘ . . 4.2
A Z

e The Heavy lon Fusion Virtual National Laboratory ::>|
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New mover: summary and plans

* Interpolation between Boris algorithm and drift kinetics enables
particle simulation with large w_At that preserves physically correct

gyroradius, drifts, and motion parallel to B

« Several tests demonstrate validity of particle mover in situations
where simple application of Boris at large w_ At fails.

- Enables simulation on next-longer time scale -- electron bounce
motion for the accelerator examples; wave period for the instability
example

« Future directions:

— Bounce orbit averaging or projective integration to jump over electron
bounce scales

— Combine with implicitness and collisions for applications to high-density
plasmas

I 1 he Heavy lon Fusion Virtual National Laboratory . ﬁ>| ]‘ﬂ @ é‘ipppl
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Outline

- Who we are. Our interest in multiscale modeling.
* Modeling of plasmas: generalities.

- AMR

* iSsues

* Electrostatic
* modeling of the High-Current Experiment (HCX)
- modeling of the Large Hadron Collider (LHC)

 Electromagnetic
 modeling of laser-plasma interaction

 Vlasov
* New particle mover for large time steps in magnetic fields
- Toward multiscale modeling of plasmas: some methods
« Conclusion
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Toward multiscale modeling of plasmas

- A multiscale approach to the modeling of plasmas should

— advance particles, or group of particles, according to pre-established
criteria of accuracy, on an adaptive basis

— integrate methods that solve on different time scales in one single
coherent scheme

- We will look at five methods:
— Implicit Multiscale PIC (Friedman et al)
— Discrete Event Simulation PIC (Karimabadi et al)
— Relaxed lterative Methods for Coupling Disparate Scales (Shestakov et al)
— Equation Free Projective Integration (Shay et al)
— Implicit/explicit solvers coupling (Adam et al)
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Implicit MultiScale PIC - IMSPIC

Advance each particle using a timestep that resolves the local field
variations (assumed to be at scale of the grid spacing)

Implicitness to:
— Afford stability with At > Tplasma and Ax > xDebye

in selected regions of phase space where that physics is deemed unimportant
... requires judgment on part of user, and/or smart controls

— afford a time-centered, second-order-accurate scheme
Particle push is a variant of “d1” scheme, which allows time step

adaptvity o+ AL[(3/2)anss + (1/2)an1]/2
Tpi1 = Ty + At (v, + (At/2)an 1]
where:
an-1 = (1/2)a, + (1/2)a,—2 (running sums)

Poisson equation includes an “implicit susceptibility” x(X)
V-[(1+ %)V9] = p. with () = %a);Atz.



Timestep sizes are all multiples of some smallest
“micro” step size; field-solve is done every micro-step

Particles are kept sorted into blocks. For every block
k, there is an associated At,; the large timestep used
for particles in large cells should help suppress the
finite-grid instability. The electron blocks might be:

Block el: push every step

Block e2: push on even-numbered steps
Block e3: push on odd-numbered steps
Block e4: push if (step number mod 4) = 0
Block eS: push if (step number mod 4) = 1
Block e6: push if (step number mod 4) = 2
Block e7: push if (step number mod 4) = 3

As particles move about, it is necessary to change
their At's (move them from block to block), in order
to preserve the accuracy of their orbits and the
deposited charge density.



A timeline shows the procedure for both active and

inactive blocks
» Dots with a back-arrow denote interpolation
in time of p and Y.

TIME LEVEL
3 4 S b 7 8 9 10 11
T NN
3 / X,V \ [P,X @.\
7/ X,V \ /D.X € oo sreessnascsans \

The other blocks were advanced on earlier steps, and
we need only interpolate their contributions to px
back to tl 8 before the field-solve:

3 4 5 6 7 § 9 10 Il
2 / N/ pX \
4 N/ X\
5 \/ BX .\
6 NS e N



Timestep size control is an “art” as much as a “science”

« Seek to control truncation error

— Static control associates ab initio a step size T with each location in
phase space

— Dynamic control sets T based on evolving gradients, etc.

- In the sheath application (see next slides), particle travel through the
sheath (9,E), rather than the time-dependent variation of E, is most limiting

— Would like to limit |kvAt| < g,, where k ~ 9 E/E . However,

if E and o,E are fluctuating about zero (as is often the case),

then where E ~ 0 there may be spuriously large values of k
— It’s somewhat easier to limit w2 Af> = (g/m) |9, E|Af* < &,
by computing|o,E | on the grid

— For our sheath work we used static control

trap



Application to the modeling of a sheath near a “floating” wall

SYMMETRY PLANE CONDUCTING WALL
| pawtjcles hit the wall &are absorbed Voo
| ‘\‘~ - \\\ ‘L 3 l‘ \
. S~ ) . \ \ p
: particles are_trapped \ \ RN
: \“\“ i \“\ \“‘ ‘!| :‘ \\
v | T 16 8 N 42l
ions fixed, At-3235t \\\ ".‘ '
electrons cutoff RSN \\
Maxwellian :‘_ e /,x”/ Lol \
i ""’ I"I "l "' : \
| /,' , ’l : "
I "l" ,I’ 'll "' ‘l'
: ,,”"" I”" Il" l’: :"'
l ,”’ /'l " " i
I ’,f ’l ‘I ' '
! il IR 4 - . '
- ‘ N !
| .-~ SEPARATRIX ! P
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*S. E. Parker, A. Friedman, S. L. Ray, and C. K. Birdsall, “Bounded Multi-Scale Plasma Simulation:
Application to Sheath Problems,” J. Comp. Phys. 107, 388 (1993).
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Potential vs. x att =100 (00p

Application to sheath showed effectiveness of method

0 —_— —_—
Multi- A ol " yvs.xatt=100
~group, ‘ 16 |
¢ -1} MaX : Xx) 12 | -
timestep N _-
ratio
Ll G=64 | | ‘T :
0 210 ‘:0 . 6l0 8‘0 100 ° 0 l 2‘0 l 410 l 610 l 8? ] 100
X
R e ey = e e S 1.8
\ f CPU time vs.
14f max timestep
Single- w otz ratio G
P -1 group 5o (speedup of 4 at
5 o8 optimum G = 32)
0.6} s
_ol 0.4?
0 2.0 410 5'0 alo 100 0-24 2 5 110~ 20 50 100 200
X G

Another series of runs examined propagation of an ion acoustic shock
front toward a conducting absorbing plate; see paper by Parker, et al.



Application of IMSPIC to secondary electron emission (SEE)
effects in a plasma slab in crossed electric and magnetic fields
[Sydorenko, Smolyakov, 46" APS DPP, Savannah GA, 2004, NM2B.008]

Hall thruster, cylindrical geometry:

ey

1D3V PIC simulations, plane geometry,
approximation of accelerating region of

a Hall thruster:
dielectric

, B

X X
plasma
vy ZE

«— [ —>

SEE

dielectric

Motivation:

Electron temperature in the accelerating
region of a Hall thruster (40 eV) is higher
than the temperature of charge saturation
of SEE in Maxwellian plasma (17 eV).
[Staack, Raitses, Fisch, Appl. Phys. Lett. 84,
3028 (2004).]

Objective:
The investigation of modification of

electron velocity distribution function by
SEE effects.

Simulation requirements:

Both the sheath and the bulk plasma must
be resolved.

PIC code:

Electrostatic implicit multi-scale with non-
uniform grid constant in time. [Friedman,
Parker, Ray, Birdsall, J. Comput. Phys. 96, 54
(1991).] The external fields B, and E, are
assumed constant.



Application of IMSPIC to secondary electron emission ...
Benchmarking of the multi-scale code

The code was applied to simulations of the region between the Maxwellian plasma
source (x=0) and the wall with SEE (x=L). No collisions, zero external fields.

Such a problem was considered by Schwager [Phys. Fluids B 5, 631 (1993)]

-0.02

-0.00
e N -~ 0.02

Snapshots of profile of potential.

The insert figure zooms into the
potential dip near the emitting wall.

| » Blue arrows — Schwager’s data.

- Black curves — uniform grid,
Ax=4,,/32,At= 1/(4a)pe)
 Red curves — nonuniform grid,
Ax . =A, /32,Ax  [Ax_. =16;

Aty =1/(128w,,), 1,/ At =64

The results of the single-scale and multi-scale simulations are close to each other

and reproduce the results of Schwager.

The multi-scale simulation is 8 times faster than the single scale simulation.




Discrete Event Simulation is an alternative approach

*H. Karimabadi, J. Driscoll, Y. A. Omelchenko, and N. Omidi,to be publ

DES PIC has similar goals to Implicit Multi-Scale PIC but differs fundamentally
— Event-driven, not time-driven
— Particle timesteps fully independent, asynchronous
— Not (necessarily) implicit

Builds on established discrete-event methodology

Incremental field solution may be a challenge

Successfully applied to spacecraft charging in 1D spherical geometry™:
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Relaxed lterative Methods for Coupling Disparate Scales (RIC)

Motivation: ol
 evolution of T, n, v in toroidal MFE devices
governed by transport which is usually
dominated by fluxes driven by plasma
turbulence

« Significant spread of scales (especially time)

From: Wal tz/ Candy
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RIC: Step 1, split the equations

Consider nonlinear equations containing two timescales, of form:

du+V-I'(n)=24,

u = density, temperature, etc
Define average & fluctuating parts u = (u) + U, (U) =0

Split equations into averaged (transport) and fluctuating (turbulence)
parts:

d(w) +V-(T(w) =(S), “transport”
da+V-[Tu)—(C)]=5-(S) “turbulence’

Notes:
— () denotes average over ensemble, spatial dimension, or time.

— Method applies to systems where short and long timescales not
derivable from single set of egs.

— Next step (2) is predicated on disparity of ( ) and ~ timescales

I 1 he Heavy lon Fusion Virtual National Laboratory . ;L/ﬁr% E %;\illlllll,
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RIC: Step 2, solve coupled system via relaxed
functional iteration -- fully implicit and Jacobian-free

- ot and At = turbulence and transport code timesteps

« For each iteration j: |5t T T R

In the turbulence code: S Liurb
. set] - = (u)"*1. J >

set input profile (u) = (u) o y
- take turb. code timestep e
-yt = it = <r>j+1 /,/
In the transport code: W) ||t
- re-solve the same timestep with R

updated (I')*" from turb. code o
- solve as if linear diffusion eqn for A At

(u)“*”” by writing L | |

|||||||||/ / | | ttransp

(T) = -D -V ()11 with ¢ . ,
D = - (I)/ V {u)™") M -

— denotes relaxed av. over
iterates, required for stability.

massssssssmmm The Heavy lon Fusion Virtual National Laboratory m ::>\ m E %S\JPPPI
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Coupling simple transport and (HW) turbulence codes
achieves rapid relaxation to steady-state transport

1.05 e T T T T T T T T T T T T T T T
1.00 F Initial -
95 E /Density .
.90 F ~ .
.85 F ]
200 cycles ‘
N y
Turbulence code alone
required > 10,000 timesteps
to approach this solution.
NN
-45 .llllllllllllllllllllllll'llllllllllllllllllllllllllllllllll-
0 5 10 15 20 25 30 35 40 45 50 55 60
grid #
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RIC summary

« RIC is method which allows running a turbulence code on transport
timescale and thus obtain transport profiles self-consistent with turbulent
fluxes

« It can be interpreted as an integration of a Delta f and a f solver, which
follows both f (transport) and &f (turbulence)

- Fully implicit transport timestepping -- no stability limit on transport
timestep

— one transport timestep (including At=o) costs ~ saturated turbulence
code run with fixed profiles

— implies time savings ~ (turbulence timescale/transport timescale)

« A coupling that works for local and (with extensions) non-local transport
— demonstrated solutions for cases where flux locally runs up-hill

massssssssmmm The Heavy lon Fusion Virtual National Laboratory m ::>| m @ %S\JPPPI
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Equation Free Projective Integration

* Projective Integration

— A method for using a combination of a few small time step
integrations to cover large time steps.

« Restriction and Lifting

— Mappings between a high dimensional representation (microscopic or
fine) and a low dimensional representation (macroscopic or coarse),
for example:

Microscopic - a collection of particles in Monte Carlo simulations to
a low-dimensional description

Macroscopic - finite element approximation to a distribution of the
particles

* Projection done on macroscopic representation

«  “Experiment” (kinetic code) evaluated on microscopic representation.

Kevrekidis et al., 2002
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Equation Free Projective Integration

Projective Integration - a sequence of outer integration steps:

Need to study the accuracy and stability of these methods
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Equation Free Projective Integration cycle
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Projecting forward in time

Use least squares fit.
Skip nstpinit steps, fit to nstpextrap steps
Extrapolate forward nstpcrs steps.

Use predictor corrector (trapezoidal leapfrog)
— 2nd order accurate 1n time

nstpers
< >
Example
o nstpm nstpextrap
nstpinit = 50 — —> A
nstpextrap = 100 | p 0.885 ' ' ' ' »
L ex0-880
nstpcrs = 350 0875
0.870
0.865

0.860
0.855

0.00 0.01 0.02 0.03 0.04 0.05
Time
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t o= 000000

Test: ion acoustic mode ho

- Wave propagation speed
matches exactly.
- P, diverges first.
« So far, x12 speed-up V 2
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Coupling of explicit/implicit solvers

 Motivation: high/low density region better handled by implicit/explicit solver.

- J.-C. Adam and A. Heron have proposed to extend the new AMR techniques
developed by J.-L. Vay to the coupling of explicit and implicit solvers.

EXPLICIT CODE IMPLICIT CODE

« The left system would be terminated on the right by absorbing boundary
conditions that will suppress the outgoing wave of the explicit part, and vice-
versa for the right system.

- Particles move freely through the boundary and give the correct source terms in
both regions.

« Because mesh size can be different on both sides of the boundary M, mesh

refinement is de facto built into the method.
messssssssmm The Heavy lon Fusion Virtual National Laboratory m L‘L/a'>\1m E %;\PPPI,
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Conclusion

« A lot of effort has been/is devoted to develop techniques to address multiscale
issues in plasma modeling.

« AMR can be of great help for PIC/Vlasov multiscale plasma simulations but
scheme must be derived with care (spurious self-force, conservation of charge,
reflection of waves, non-cancellations due to numerical errors (dispersion), ...)

— in electrostatic, ‘problem solved’ to some extend but cutoff of plasma modes
at interface remains to be studied,

— in electromagnetic, existing schemes can be successfully applied to some
problems but more research is needed to get better scheme(s),

— with irregular geometries, AMR on regular cartesian grids may not be enough:
sometimes need to apply irregularly gridded patch which maps to
conductors, field line, ...,

- We have developed a new solver that allows to jump over the cyclotron period.

- This is a very active field with several promising emerging methods.
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